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Starting with the very first evaluator, implemented as a thousand-line
BASIC program in 1972, Smalltalk was the first computer language based
entirely on objects and messages. This paper gives an overview of Smalltalk
and some of the design issues Smalltalk implementors had to face.

1 Introduction

Smalltalk consists of

1. an object-oriented programming language,

2. a virtual machine to run programs written in that language,

3. a class library, providing access to low-level functions and facilitating development,
and

4. a graphical user interface and programming environment included in the class
library.

In respect to points 1-3, Smalltalk is similar to recently developed object-oriented
languages such as Java or C#. However, it includes a GUI which contains a development
environment and debugging facilities; even the GUI itself can be modified and analyzed
using Smalltalk.

Smalltalk implementations include the virtual machine (VM) and the virtual image
(VI). The virtual machine is hardware/operating system dependant and interprets pro-
grams written in the Smalltalk language and compiled to Smalltalk binary code; thus,
the VM includes the memory management and other primitive functions which must
run on top of the operating system. The virtual image contains the class library in
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Smalltalk binary code; therefore, it needs the VM to run, but it is machine-independent.
It includes data structures, the user interface, and development tools.

Theoretically, a Smalltalk virtual machine could be written for any hardware platform
conforming to the following requirements as laid out in [GR83], the so-called “Blue
Book”:

• a bitmap display

• a pointing device with three buttons

• a keyboard

• a disk

• a real time clock and a millisecond timer

Therefore, it is not surprising that implementations of Smalltalk are available for a
wide variety of platforms, including DOS, OS/2, Windows, Macintosh1, Unix, BeOS,
NeXT and PDA operating systems.

There is another facet in which Smalltalk differs from the object-oriented languages
we usually use today: A program is not developed by starting a text editor, writing
it down, compiling it, and starting it, but by manipulating the Smalltalk environment
itself. The virtual image, representing the current state of the system, is a collection of
objects being created, destroyed and modified. As shown in figure 1, a program called
System Browser can be used to examine and modify the classes currently present in the
running virtual image.

Smalltalk has evolved from its first version Smalltalk-72 to Smalltalk-80, which is the
current standard. The historical development of the language and its virtual machine is
outlined in [Ing83].

1.1 Implementing Smalltalk

The Smalltalk-80 virtual machine specification [GR83] defines the required behavior of
a Smalltalk-80 interpreter and provides a “model interpreter”. The implementation
details, however, are left to the implementor. Many of the design decisions that have to
be made are laid out in [WB83].

One approach – to translate the specified model interpreter into an appropriate im-
plementation language – creates a usable interpreter in a short period of time. However,
its performance might be disappointing; therefore, another approach might be taken by
designing a more efficient interpreter based on the experience gained from the model
implementation.

Other design decisions implementors have to face are the hardware and the implemen-
tation language. The system will need to support the required amount of main memory

1On the Macintosh and other systems with less than three mouse buttons, additional buttons can be
emulated by holding down a control key while clicking.



Figure 1: System Browser

and the processor should provide an adequate number of registers in order to optimize
performance by caching variable values. As the Smalltalk specification requires a bitmap
display device, hardware support for bitmap operations can also improve performance.

The choice of an implementation language opens up the usual dilemma faced by
software developers: A high-level programming language facilitates the coding whereas
usage of a low-level language might yield better performance.

Tektronix Smalltalk

One of the companies that implemented Smalltalk was Tektronix Inc. They developed a
Smalltalk-80 interpreter based on a Motorola 68000 processor and less than 1 megabyte
of RAM. The virtual machine was written mainly in Pascal, although the arithmetic
primitives were coded in assembly language to simplify the handling of the SmallInte-
ger bit (see section 3.1 for details). It was cross-compiled on a DECSYSTEM-20 and
later re-written and optimized entirely in assembly language. Their experience with the
development process is outlined in [McC83].

The Tektronix implementors decided not to use an operating system on the host
system, thus having full control of the hardware and the memory. The drawback of this
decision was that the file system and other basic features had to be implemented (rather
than just interfaced).

Apple Smalltalk

Another Motorola 68000 implementation was done by Apple Computer Inc. Their work
was basically a translation from the Xerox specification to 68000 assembly language
with only one small optimization regarding the message lookup cache. Very thorough



performance measurements were made during the implementation. The results can be
found in [MC83].

Berkeley Smalltalk

The University of California, Berkeley, also implemented a Smalltalk interpreter they
called “Berkeley Smalltalk”. They used a DEC VAX-11/780 as the host platform and
wrote their virtual machine in the C programming language under Berkeley Unix. They
believed that a straightforward implementation of the specification could not achieve
acceptable performance. Proving their point, they published a comparison of a by-the-
book interpreter and their implementation ([UP83]).

DEC VAX/Smalltalk-80

The Corporate Research Group at Digital Equipment Corporation (DEC) also created
its own implementation. The first virtual machine was written on a PDP-11/23, imple-
mented in assembly language as closely as possible to the official specification. It turned
out to have three major performance bottlenecks: the memory manager, which spent
most of its time adjusting the memory map because of the PDP-11’s memory design;
the lack of writable microcode hardware, which forced the developers to use assembly
language instead; and the reference counter, which created a large amount of memory
management overhead.

The second assembly code implementation was based on a VAX 11/780, the same host
system on which Berkeley Smalltalk was developed. DEC used VMS as the operating
system, a word size of 32 bits, and an incremental compacting garbage collector ([BS83]).

VAX/Smalltalk-80 was adapted to co-exist with other applications on a timesharing
system, something for which it was not designed. Wait messages were inserted into code
loops waiting for mouse buttons and a hibernate primitive was added to the idle process.

Squeak

Squeak is a recently developed, freely available implementation of Smalltalk, whose
virtual machine has been written entirely in Smalltalk.

The goal of the Squeak developers was to design an easy-to-use educational software
environment that could even be programmed by children. In order to ensure portability
and to ease debugging, the Squeak kernel was written in Smalltalk and translated into C.
To avoid having to emulate the complete Smalltalk language in C, Squeak was written
in a subset of Smalltalk which did not include support for objects and message sending.

The machine-dependent part of the virtual machine that must be written directly
in C has about 1700 lines of code2 which must be changed when porting Squeak to
another hardware platform. The machine-independent rest of the VM (about 6500 lines
of code: interpreter, object memory, graphics libraries) is written in Smalltalk and can
be translated into C when compiling the VM. Only a few weeks after the release of

2Figures are taken from the December 1996 release, version 1.18.



the Macintosh version of Squeak, ports for various UNIX and Windows systems were
available.

Details about the development of Squeak are laid out in [IKM+97].

2 Language

In contrast to most popular object-oriented languages, which distinguish between native
data types and class-based objects, everything in Smalltalk is an object. This is partly
due to the fact that one of the Smalltalk paradigms is to write as much as possible in
Smalltalk itself. Only parts that must be implemented in machine code (such as I/O
primitives or basic arithmetic operations) are part of the virtual machine.

2.1 Objects and Messages

The first version of the language was Smalltalk-72, a language based entirely on classes,
objects and messages passing between objects.

Message Passing Example: For example, the expression 5 squared sends the
message squared to the object 5, which belongs to class SmallInteger. The class
SmallInteger is defined to return self * self upon receiving the message squared,
which, in this example, yields the new SmallInteger object 25.

Smalltalk-74, following only two years later, included some updates to the virtual
machine. In 1976, there was also a redesign of the Smalltalk language (Smalltalk-76):
Classes became real objects and support for inheritance was added. Furthermore, the
syntax was updated and some constraints limiting the maximum number of variables and
literals were removed. Smalltalk-78 included a new method become, which allowed two
objects to exchange their identity (see below). Finally, Smalltalk-80 removed non-ASCII
characters from the language.

2.2 User Interface

Smalltalk-72’s graphic capabilities relied on Textframes to display text and Turtles to
draw lines. In Smalltalk-74, an advanced library called BitBlt was introduced.

In an effort to reduce the size of the machine-code containing the kernel, BitBlt was
almost entirely ported to Smalltalk code, thereby becoming part of the virtual image.
This step had become necessary, because Smalltalk-78 was supposed to run on a portable
computer and the designers did not want to transcribe the whole kernel to the portable
computer’s machine code.

Squeak

Support for sound was not included in the Smalltalk-80 specification; however, it has
been implemented in Squeak. Since sound processing is a very compute-intensive process,



the algorithms were implemented in the Smalltalk subset which can be translated into C
code. Therefore, they can either be run directly within Squeak or translated and linked
into the virtual machine for better performance.

Squeak also uses BitBlt for displaying purposes and added support for color: table-
based color with 1, 2, 4 or 8 bits and RGB color with 16 or 32 bits. An additional library
WarpBlt3 was implemented which speeds up rotation and scaling of images and adds
support for anti-aliasing techniques (e.g. smooth edges and calculate average colors).
WarpBlt was written in Smalltalk and afterwards translated into C for performance
reasons.

3 Virtual Machine

The Smalltalk Virtual Machine is used to establish the link between programs compiled
to Smalltalk byte code and the underlying operating system. Its major tasks include
memory management and garbage collection.

3.1 Object Memory

The original Smalltalk-72 used direct memory addresses as object pointers. Objects
were reference counted (see Section 3.3) and returned to the linked list of free storage
after no longer being accessible.

Smalltalk-76 included OOZE (“Object-Oriented Zoned Environment”), a virtual
memory system. Class information was encoded directly into nine bits of the object
pointer. This had the advantage of not having to include a class pointer within the
object, thereby saving some storage space. However, it did limit the number of classes
possible and the maximum number of instances per class.

Smalltalk-78, on the other hand, used an indexed object table. Therefore it could
easily support a new primitive method called become:, which would switch the identity
of two objects by simply exchanging the contents of their object table entries. For reasons
of efficiency, the replacement of direct object pointers by an object table was also used to
store SmallIntegers (integer values between -16384 and 16383) as values rather than as
objects. If an object pointer had the low-order bit set, it was not pointing at an object
in the object table but it was rather a SmallInteger, whose value was defined by the
remaining 15 bits. This had the consequence that pointers to two SmallInteger objects
containing the same value were actually equal.

Object Pointer Example: 000000000010100 is an object pointer to the object table
entry with index 20. Object table indices are always even. However, 000000000010101
is a SmallInteger containing the value 10.

Example for the become: Message: Imagine the following piece of code being
executed.

3WarpBlt was supposed to be a “warp drive” for BitBlt, named after the engine of the starship
Enterprise in the popular science-fiction TV show Star Trek.



x := ’X’

y := ’Y’

p1 := x

p2 := x

p1 become: y

After issuing the last statement, x, p1 and p2 point to the string object ’Y’ whereas y

points to ’X’.

[WB83] outlines other possibilities for object pointer formats. The internal format
is invisible to the Smalltalk programmer; therefore, individual implementations can use
alternative formats and still conform to the formal specification. For example, the
decision to put the SmallInteger tag bit into the least significant bit (LSB) was made
because the original implementation hardware (a Xerox processor) reflected the value of
this bit in its condition codes. As we will see below, other implementations might have
reasons to change that position in order to optimize the performance for their desired
host system. They might put the tag into the most significant bit (MSB, which is the
sign-bit position for 16-bit 2’s complement processors) and use a conditional branch to
test for the tag. Another possibility would be to keep the tag in the LSB but invert the
meaning (i.e. 1 = object pointer, 0 = SmallInteger). This way, values can be added and
subtracted without requiring a conversion. The result is another valid SmallInteger in
object pointer format. Inverted meaning and putting the tag into the MSB would result
in an object pointer value that could be used directly as a direct index into a table of
8-bit values.

DEC VAX/Smalltalk-80

Due to the fact that DEC VAX/Smalltalk-80 was based on 32-bit words, the DEC
implementation used 31-bit object names, using the 32nd bit as the SmallInteger tag.
This enabled Smalltalk to use 31-bit long SmallIntegers, thereby eliminating the need
for LargePositiveIntegers as indices to large arrays.

The implementors also decided to use some kind of “virtual object” system, in order
to allow for a very large number of objects. The designer’s goal was to use a hybrid
system of object swapping and paging in order to get a low faulting rate and to have
Smalltalk run on paged systems.

Squeak

The Squeak object memory was designed with 32-bit direct object pointers, i.e. without
an object table. In order to reduce overhead, a variable-length object header is used.
A small class table is included for frequently used classes thereby avoiding the need to
store a full 32-bit class pointer in every object. Nevertheless, not using an object table
makes the become: operation much more costly, because rather than just switching two
entries in the object table, the whole memory must be scanned in order to replace every
pointer to one object with a pointer to the other.



3.2 Object Allocation

There are two cases in which new memory needs to be allocated:

1. A new object is being created explicitly by calling the new primitive.

2. A new activation record must be allocated because a method has been invoked.
This is accomplished by creating a new context object (which behaves like any
other Smalltalk object).

A new object pointer must be found to refer to the new object. The memory manager
must then find an area of free storage in the object memory that can be used to store
the new object. Finally, internal data structures must be updated and the new object be
initialized with a null value. Since every method call causes a new context object to be
created, performance can be raised considerably by speeding up this process. Another
bottleneck is located within the graphics routines, which cause a large number of small
Point objects to be created.

Tektronix Smalltalk

Tektronix decided to cut on the context creation expenses. Complete context objects
are only created if they are really needed, i.e. if a method references the active context
or causes another context to be activated.

Berkeley Smalltalk

The Berkeley Smalltalk optimization is based on the assumption, that when an object
of a certain size (for example, the size of a small context object) is freed, a new object
of that size will be requested in the near future. Thus, pools of objects with small sizes
(0-40 fields) are being used. When freeing an object, the memory manager returns it
to the linked list of objects of this size but the object table entry is being kept. If a
new object needs to be allocated and the corresponding pool is empty, the Unix storage
allocator is invoked, delivering ten new objects for the pool. On the other hand, when
no more object table slots are available, objects in the free pool are being removed.

3.3 Garbage Collection

A new object is allocated by sending a new message to its class. To explicitly deallocate
an object is not possible, because this could result in errors such as variables still refer-
encing an object which no longer exists. Thus, the reference counting algorithm is used
to ensure that objects that are no longer in use will be destroyed.

Reference Counting: Every object has a counter that is incremented whenever a
variable is assigned a pointer to that object. As soon as the variable is destroyed or
reassigned another value, the reference counter is decremented. As soon as the counter
reaches zero, the object can be destroyed. Smalltalk’s reference counting algorithm is
laid out in more detail in [WB83].



It is critical for the garbage collector to be very stable and reliable. Freeing objects
while they are still being referenced can lead to errors that are difficult to debug because
they appear much later, when the damage has already been caused and part of the still-
in-use memory has been overwritten. On the other hand, not freeing unused memory
leads to memory leaks.

By the time Smalltalk-80 was implemented, the classical garbage collection method
called mark and sweep (see [Coh81] for details) was considered unacceptable because this
process would consume a considerable period of time whenever storage was reclaimed.
The reference counting model was chosen because it distributed the overhead time over
the normal operation of the system.

[WB83] suggests that garbage collection is an area where the performance of the
Smalltalk system can be improved significantly. This observation has been confirmed by
[MC83] and [UP83], whose performance benchmarks show that a considerable part of
the execution time is spent reference counting. One proposed technique is called deferred
reference counting (see [DB76]), which reduces the number of necessary reference count
operations.

Although the formal specification’s Smalltalk model uses reference counting, other
implementations have decided to use a different approach to garbage collection. The
drawbacks of reference counting are that it does not work for circular references and
that it fails once the reference count field cannot hold the number of references (which
can either be solved by a sufficiently large reference count field, an overflow detection
mechanism, or an additional mark-and-sweep garbage collector).

Tektronix Smalltalk

The very first Tektronix implementation included the reference-counter provided by the
formal specification (translated into Pascal) and a simple, recursive mark-and-sweep
algorithm to get rid of circular references.

The second version of Tektronix Smalltalk used a separate reference-count table
and the above mentioned deferred reference counting technique to limit the reference-
counting overhead.

Berkeley Smalltalk

Berkeley Smalltalk implemented the following enhancements to speed up reference count-
ing:

• The reference-count variables were enlarged from 8 to 32 bits to avoid overflow
checking.

• The SmallInteger flag was moved from the LSB to the MSB to avoid a previously
necessary right shift. (E.g. 10 being represented as 10...001010 rather than
00...010101.) SmallIntegers can now be seen as negative object pointers; there-
fore, only a simple signed comparison (pointer <= 3) is necessary to determine



whether an object has to be reference-counted or not. (Object pointers 0 to 3
(invalid object pointer, nil, true and false) do not need to be reference counted.)

• The object table was split up into separate arrays for the reference counts, the
addresses and the flags.

• The concept of destructive moving was used to pass a return variable from the
callee’s to the caller’s context. This avoids the overhead of incrementing the ref-
erence counter when adding the variable to the caller’s context and decrementing
it when destroying the callee’s context.

• Stack management has been improved to decrease the amount of required context
scans and to reduce the number of reference-count operations.

DEC VAX/Smalltalk-80

DEC decided to implement an incremental, compacting garbage collector based on the
Baker Garbage Collector ([Bak78]4). The basic idea is to split the memory into two
spaces (the Fromspace and the Tospace) and copy the “root” objects from one space to
the other. Objects referenced by these root objects or other already copied objects are
also being copied. Therefore, everything that is transitively accessible will be copied; the
rest is garbage and will be reused when, on the next garbage collector run, the locations
of the two spaces are switched (a so-called “flip”).

However, this algorithm proved to be inefficient, because context objects would fill up
free space rapidly. The authors of [Bak78] suggest using the Lieberman-Hewitt Garbage
Collector ([LH83]) instead. This adaptation would divide the available memory into a lot
of little Baker spaces (i.e. spaces, that are garbage collected using the Baker algorithm).
One space would contain objects of about the same age. This would result in all the
small new context objects being in the same small space. This space would frequently be
garbage collected; however, there would be no need to move the large objects contained
in the other spaces.

A context reclamation algorithm has been implemented to avoid the strain on the
garbage collector caused by frequent creation and destruction of context objects: If the
active context object does not need to be referenced by other objects, it can be reclaimed
immediately upon returning and be stored in a linked list of free context objects.

Squeak

Instead of reference counting, Squeak uses a two-generation mark-and-sweep approach
to achieve garbage collection, based on the method used by Apple Smalltalk. Mark-
and-sweep basically means that periodically the memory is scanned and all objects that
have any variable pointing at them are marked. Unmarked objects are removed.

4If you do not want to read the entire paper, [BS83] provides a small overview of the algorithm used.



4 Further Information

The classic source of information about Smalltalk-80 are the “Blue Book” [GR83], the
“Green Book” [Kra83], and the “Red Book” [GR84]. They are out of print, but some
chapters of the Blue Book have been made available online: http://users.ipa.net/

~dwighth/smalltalk/bluebook/bluebook_imp_toc.html. Further Smalltalk informa-
tion can be found at http://www.smalltalk.org and at one of the Smalltalk user
groups around the world (http://www.smalltalk.org/usergroups.html).

The Squeak executables, its source code and further information about the project
can be found at http://www.squeak.org.

5 Conclusion

Through its years of development, Smalltalk has become a mature object-oriented en-
vironment with the general concepts already being present in the very first implemen-
tation. It has been shown that Smalltalk can be created for any platform that meets
the minimum requirements and that the reference implementation’s performance can
be dramatically increased by use of more efficient memory management algorithms and
by taking advantage of the host processor’s characteristics. Recent implementations
show that this design can be used to create easy to use environments including the
features (sound, graphics, TCP/IP etc.) one has come to expect from a modern class
library-based development system.
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